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Abstract.  The article investigates a system of second-order hyperbolic differential 
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1. Introduction 

 

The assessment of the current state of classical differential equations theory 

shows that non-local boundary problems hold a special place within the problems 

of mathematical physics. The emergence of such issues during the investigation of 

various problems in natural sciences and technology increases the interest in the 

study of non-local conditional problems. The study of non-local two-point 

boundary problems occupies an important place in the theory of non-local 

boundary problems. With such problems, it is usually not possible to directly 

measure the important characteristics of real processes, but the average value of 

those quantities is known. In such cases, when mathematically modeling these 

processes, this information can be represented in the form of a solution with multi-

point boundary conditions.  

It should be noted that non-local boundary problems arise in the construction 

of mathematical models of processes such as turbulence, plasma, heat transfer, 

demographic, and other processes [17,19,25,]. The article presented for the first 

time constructs a Green’s function for a system of hyperbolic equations given with 

two-point boundary conditions and investigates the existence and uniqueness of the 

solution to the boundary problem. 

 

2. The formulation of the problem and preliminary results. 
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In the paper we consider a nonlocal problem with two point boundary 

conditions for the Goursat-Darboux system un the domain :       

   )),,(,,( xtzxtfztx  ,),( Qxt                                             (1) 

     ),(),(),0( xxTzxz   lx ,0 ,                                       (2) 

  ),(),()0,( tltztz   Tt ,0 .                                         (3) 

where  is an unknown n – dimensional 

vector-function, is continuous on 
nRQ

 
n  - dimensional 

vector – functions )(x and )(t
 
are continuously – differentiable on    lT ,0,,0   

respectively. 

It is assumed that the functionsand )(t satisfy the agreement condition 

).()0()()0( Tl  
 

Note that problems for hyperbolic type equations have been studied in [1]-

[8],[10]-[12],[18],[20],[24],[26],[27]. In these works the conditions of classical, 

general consistency of problems with nonlocal conditions have been established for 

second order hyperbolic equations.  Similar issues for ordinary differential 

equations have been studied in [7], [9],[13]-[16] works.  

 

3. Main results. 

 

In this paper, for the first time the Green function is constructed for 

problem (1)-(3) and this problem is reduced to an equivalent integral equation. 

Further, using the method of Banach contraction mappings principle, sufficient 

conditions of classical consistency of the given problem are established.  

Theorem 1. A problem (1)-(3) is equivalent to the following integral equation: 
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Proof. We will look for any solution of equation (1) in the form 
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,)()(),(,,(),(
0 0

  

t x

xbtadsdszsfxtz 
                         (4) 

here )(ta and

 

)(xb  are unknown continuous functions and are determined in the 

segments    lT ,0,,0  respectively. Let the function determined by equality (4) 

satisfy conditions (2) and (3). Then 

,)()0()),(,,(),0(
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         (6)
 

Without loss of generality, we assume that the relationship
 

0)()0(  Taa
 

is valid. 

From equality (5) we obtain the following relationship:
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We’ll take into account equality (6) the function )(),0( lbb  determined by equality 

(7). 

Then
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We’ll take into account expressions (7) and (8) obtained for the functions  and 

in the (4). 

Then
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From the equality (9), we obtain that  
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Let us introduce a new matrix function. 
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Then the equality (11) can be rewritten in the following form.
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which confirms the validity of (10). Let the function ),( xtz be expressed by 

equality (10). We will show that the function ),( xtz is the solution of (1), (2). We 

will calculate the derivative of ),( xtz with respect to the variables t and x. 
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     Now we’ll prove the second part of the theorem. We show that the function 

determined by equality (11) satisfies conditions (2) and (3). 
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We can show that the condition 

)(),()0,( tltztz 
 

is also satisfied similarly. 

This completed the proof of Theorem 1. 

 

4. Existence and uniqueness. 
 

To prove the uniqueness of the solution of the stated problem, we 

determined the operator    nn RQCRQCP ;;:   
as 
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It is known that problem (1)-(3) is equivalent to the problem on a fixed 

point .Pzz 
 
So, problem (1)-(3) has a solution if and only if the operator P has a 

fixed point. 

Theorem 2. Assume that the following conditions: 
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Then boundary value problem (1)-(3) has a unique solution on Q. 
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It is clear that by condition (12) P is contraction operator. This, boundary value 

problem (1)-(3) has a unique solution. 

 

5.  Example. 

  

We  give an example illustrating the main result obtained in the paper. 

Let’s consider the following system of differential equations with an two-point 

boundary condition: 
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Obviously, the agreement condition is satisfied. Condition (13) is satisfied 

due to conditions (12) and  .1.0,1max  MG Consequently,  

.11,01,01max  MTlGL  

So, by theorem 2, boundary value problem (14)-(15) has a unique solution on 

   .1,01,0   

6. Conclusion. 

In this paper, the existence and uniqueness of solutions for nonlinear 

hyperbolic differential equations with two-point boundary conditions is 

established. Note that the method introduced in the paper can be successfully used 
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in more complicated problems for hyperbolic differential equation. For example, 

we can consider the following problem: 

   )),,(,,( xtzxtfztx        ,),( Qxt   

with two point boundary condition 

),(),(),0( 21 xxTzAxzA          ,,0 lx  

),(),()0,( 21 tltzBtzB                .,0 Tt  

here
nnRBBAA 2121 ,,,  are the given matrices and 

0)det(,0)det( 2121  BBAA .    Tttlxx ,0),(,,0),(    are the given 

differentiated functions. 
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